$+\infty$ Department of Mathematics			INDIAN SCHOOL AL WADI AL KABIR Class IX, Mathematics Worksheet- Triangles					
SECTION A Section A consists of 12 Questions of 1 Mark each.								
1.	If $\triangle A B C \cong \triangle P Q R$ and $\triangle A B C$ is not congruent to $\triangle R P Q$, then which of the following is not true?							
	A	$B C=P Q$	B	$A C=P R$	C	$Q R=B C$	D	$A B=P Q$
2.	If $A B=Q R, B C=P R$ and $C A=P Q$, then:							
	A	$\triangle A B C \cong \triangle P Q R$	B	$\triangle C B A \cong \triangle P R Q$	C	$\triangle B A C \cong \triangle R P Q$	D	$\triangle P Q R \cong \triangle B C A$
3.	The measure of x in the given figure is:							
	A	36°	B	68°	C	20°	D	80°
4.	Given two right angled triangle ABC and PRQ , such that $\angle A=30^{\circ}, \angle Q=30^{\circ}$ and $\mathrm{AC}=\mathrm{QP}$, then:							
	A	$\triangle A B C \cong \triangle Q R P$	B	$\triangle A B C \cong \triangle P Q R$	C	$\triangle A B C \cong \triangle P R Q$	D	$\triangle A B C \cong \triangle R Q P$
5.	If the altitudes from two vertices of a triangle to the opposite sides are equal, then the triangle is:							
	A	Equilateral	B	Scalene	C	Right angled	D	Isosceles

6.		low fig QR is: 40°	$\overline{\mathrm{QR}}$	iangle	$h<1$	$0^{\circ}, \angle Q=$	and	5 cm . The
	A	10 cm	B	8 cm	C	5 cm	D	4 cm
7.		ven figu	va	x is:		B	78°	
	A	12°	B	16°	C	18°	D	10°
8.	Which of the following is not a criterion for congruence of triangles?							
	A	SAS	B	SSA	C	ASA	D	SSS
9.	In the given figure, $\triangle \mathrm{AFB} \cong \triangle \mathrm{AFG}, \triangle \mathrm{ADE} \cong \mathrm{AGE}$ and $\angle E A F=45^{\circ}$. Then the measure of $\angle D A B$ is ? (COMPETENCY BASED)							
	A	120°	B	60°	C	1350	D	90°

ASSERTION AND REASONING	
DIRECTION: In the question number 10 and 11, a statement of assertion (A) is followed by statement of Reason (R). Choose the correct option: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A). (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.	
10.	Assertion: In $\triangle A B C, B C=A B$ and $\angle B=80^{\circ}$. Then, $\angle A=50^{\circ}$ Reason: In a triangle, sides opposite to two equal angles are equal.
11.	Assertion: In right triangles $A B C$ and $D E F$, if hypotenuse $A B=E F$ and side $A C=E D$, then $\Delta \mathrm{ABC} \cong \triangle \mathrm{EFD}$. Reason: Two triangles are congruent if two sides and one angle of a triangle is equal to two sides and an angle of another triangle.
Questions of 2 marks each	
12.	In the below figure, $A D=B D=D C$ and $\angle A B D=60^{\circ}$, find x.

13.	In the figure below, if $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{BD}=\mathrm{DC}$, then find $\angle \mathrm{ADB}$.
14.	In the given quadrilateral $A C B D, A C=A D$ and $A B$ bisects $\angle A$. Show that $\triangle A B C \cong$ $\triangle A B D$. What can you say about $B C$ and $B D$?
15.	In two right triangles, one side and an acute angle of one triangle are equal to one side and the corresponding acute angle of the other triangle. Prove that the two triangles are congruent using ASA congruence criterion.
	Section C Questions of 3 marks each
16.	$\triangle A B C$ and $\triangle D E F$ are such that $\mathrm{AC}=3 \mathrm{~cm}, \mathrm{BC}=6.5 \mathrm{~cm}, \angle \mathrm{C}=80^{\circ}, \mathrm{DE}=3 \mathrm{~cm}, \mathrm{DF}=$ 6.5 cm and $\angle \mathrm{D}=80^{\circ}$. Check whether the given triangles are congruent or not.

17.	In given figure $A D \perp B C, A E$ is the angle bisector of $\angle B A C$. Find $\angle D A E$.
18.	$A B C$ is a triangle with $\angle B=2 \angle C$. D is a point on $B C$ such that $A D$ bisects $\angle B A C$ and $A D=C D$. Prove that $\angle B A C=72^{\circ}$. (COMPETENCY BASED QUESTION)
	Question of 5 marks
19.	State and prove ASA Congruence Rule.
	Case study-based (4 marks)
20.	An aluminium ladder manufacturing company manufactures foldable step ladder shown in the figure. The lengths of two legs $A B$ and $A C$ are both equal to 110 cm and the angle between the two legs is 30°. On the basis of above information answer the following questions. (I) Find the measure of $\angle A B C$. OR $A D$ bisects side $B C$ of the isosceles triangle $A B C$. Show that $A D$ is the perpendicular to $B C$.

		In two triangles ABC and $\mathrm{DEF}, \angle \mathrm{A}=\angle \mathrm{D}, \mathrm{AB}=\mathrm{DE}$ and $\mathrm{AC}=\mathrm{DF}$, then these two triangles are congruent by which congruence rule? State the congruence rule. OR Show that the angles of an equilateral triangle are 60° each.						
	Answers							
$\begin{aligned} & \text { थ. } \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	1	A	2	B	3	C	4	A
	5	D	6	C	7	A	8	B
	9	D						
	10	b)	11	c)	12	$\mathbf{x}=30^{\circ}$	13	$\angle \mathrm{ADB}=90^{\circ}$
	17	$\angle D A E=12{ }^{\circ}$.	$20 \begin{array}{l\|l} \text { (I) } \angle \mathrm{ABC}=75^{\circ} \\ \text { (II) } \mathrm{SAS} \text { congruence rule. } \end{array}$					

